Ehrhart h ∗-Vectors of Hypersimplices
نویسنده
چکیده
We consider the Ehrhart h∗-vector for the hypersimplex. It is well-known that the sum of the hi is the normalized volume which equals an Eulerian number. The main result is a proof of a conjecture by R. Stanley which gives an interpretation of the hi coefficients in terms of descents and excedances. Our proof is geometric using a careful book-keeping of a shelling of a unimodular triangulation. We generalize this result to other closely related polytopes. Résumé. Nous considérons que la Ehrhart h∗-vecteur pour la hypersimplex. il est bien connu que la somme de la hi est le volume normalisé qui est égal à un nombre eulérien. Le résultat principal est une preuve de la conjecture par R. Stanley qui donne une interprétation des coefficients hi en termes de descentes et excedances. Notre preuve est géom etrique àl’aide d’un attention la comptabilité d’un bombardement d’une triangulation unimodulaire. Nous généralisons ce résultat à d’autres polytopes étroitement liés.
منابع مشابه
Flag Statistics from the Ehrhart $h^∗$-Polynomial of Multi-Hypersimplices
It is known that the normalized volume of standard hypersimplices (defined as some slices of the unit hypercube) are the Eulerian numbers. More generally, a recent conjecture of Stanley relates the Ehrhart series of hypersimplices with descents and excedences in permutations. This conjecture was proved by Nan Li, who also gave a generalization to colored permutations. In this article, we give a...
متن کاملEhrhart f*-Coefficients of Polytopal Complexes are Non-negative Integers
The Ehrhart polynomial LP of an integral polytope P counts the number of integer points in integral dilates of P . Ehrhart polynomials of polytopes are often described in terms of their Ehrhart h∗-vector (aka Ehrhart δ-vector), which is the vector of coefficients of LP with respect to a certain binomial basis and which coincides with the h-vector of a regular unimodular triangulation of P (if o...
متن کاملExtension Complexity and Realization Spaces of Hypersimplices
The (n, k)-hypersimplex is the convex hull of all 0/1-vectors of length n with coordinate sum k. We explicitly determine the extension complexity of all hypersimplices as well as of certain classes of combinatorial hypersimplices. To that end, we investigate the projective realization spaces of hypersimplices and their (refined) rectangle covering numbers. Our proofs combine ideas from geometry...
متن کاملEhrhart Series of Polytopes Related to Symmetric Doubly-Stochastic Matrices
In Ehrhart theory, the h∗-vector of a rational polytope often provides insights into properties of the polytope that may be otherwise obscured. As an example, the Birkhoff polytope, also known as the polytope of real doubly-stochastic matrices, has a unimodal h∗-vector, but when even small modifications are made to the polytope, the same property can be very difficult to prove. In this paper, w...
متن کاملWeighted Δ-vectors I
We introduce the notion of a weighted δ-vector of a lattice polytope. Although the definition is motivated by motivic integration, we study weighted δ-vectors from a combinatorial perspective. We present a version of Ehrhart Reciprocity and prove a change of variables formula. We deduce a new geometric interpretation of the coefficients of the Ehrhart δ-vector. More specifically, they are sums ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete & Computational Geometry
دوره 48 شماره
صفحات -
تاریخ انتشار 2012